Besov Regularity for Interface Problems
نویسنده
چکیده
This paper is concerned with the Besov regularity of the solutions to interface problems in a segment S of the unit disk in R 2 : We investigate the smoothness of the solutions as measured in the speciic scale B s (L (S)); 1== = s=2+1=p; of Besov spaces which determines the order of approximation that can be achieved by adap-tive and nonlinear numerical schemes. The proofs are based on representations of the solution spaces which were derived by Kellogg 15] and on characterizations of Besov spaces by wavelet expansions.
منابع مشابه
Besov Regularity for Elliptic Boundary Value Problems
This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...
متن کاملBesov Regularity for the Poisson Equation in Smooth and Polyhedral Cones
This paper is concerned with the regularity of the solutions to Dirichlet and Neumann problems in smooth and polyhedral cones contained in R. Especially, we consider the speci c scale Bs τ (Lτ ), 1/τ = s/3 + 1/2, of Besov spaces. The regularity of the solution in these Besov spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We show th...
متن کاملMixed Interface Problems of Ther- Moelastic Pseudo{oscillations
Three{dimensional basic and mixed interface problems of the mathematical theory of thermoelastic pseudo{oscillations are considered for piecewise homogeneous anisotropic bodies. Applying the method of boundary potentials and the theory of pseudodiierential equations existence and uniqueness theorems of solutions are proved in the the space of regular functions C k+ and in the Bessel{potential (...
متن کاملRegularity estimates for elliptic boundary value problems in Besov spaces
We consider the Dirichlet problem for Poisson’s equation on a nonconvex plane polygonal domain Ω. New regularity estimates for its solution in terms of Besov and Sobolev norms of fractional order are proved. The analysis is based on new interpolation results and multilevel representations of norms on Sobolev and Besov spaces. The results can be extended to a large class of elliptic boundary val...
متن کاملLinear and nonlinear degenerate boundary value problems in Besov spaces
Keywords: Boundary value problems Differential-operator equations Banach-valued Besov spaces Operator-valued multipliers Interpolation of Banach spaces a b s t r a c t The boundary value problems for linear and nonlinear degenerate differential-operator equations in Banach-valued Besov spaces are studied. Several conditions for the separability of linear elliptic problems are given. Moreover, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998